Python: create a single dataframe by alternatively include rows from two others
Date : March 29 2020, 07:55 AM
I hope this helps . Suppose I have two pandas of the form: , Try this: In [501]: pd.concat([df, df1.set_index(df1.index + '_s')]).sort_index()
Out[501]:
A B C
first 62.184209 39.414005 60.716563
first_s 0.828069 0.762570 0.717368
second 51.508214 94.354199 16.938342
second_s 0.136098 0.991668 0.547499
third 36.081861 39.440953 38.088336
third_s 0.120465 0.546807 0.346949
|
How to rearrange rows of dataframe according to number array
Tag : r , By : Ambarish Singh
Date : March 29 2020, 07:55 AM
hope this fix your issue I believe you are dealing with the "drop" issue. When R reads a matrix with only a single column, that 2nd dimension (columns) gets "dropped." This can be fixed by adding a simple "drop = FALSE" argument after the dimensions. Object[Row,Column, drop = FALSE]
x <- matrix(c(1,2,2,1,1,2))
dimnames(x) <- list(c("TGTT", "TGTG", "TGCG", "TGGA", "TCCG", "TCAG"), "TCGA-05-4244-01A-01D-1105-08")
match <- c(1,3,2,6,5,4)
x[match,,drop = F]
TCGA-05-4244-01A-01D-1105-08
TGTT 1
TGCG 2
TGTG 2
TCAG 2
TCCG 1
TGGA 1
|
how to rearrange rows in a dataframe based on time sequence
Tag : r , By : Pieter Taelman
Date : March 29 2020, 07:55 AM
To fix this issue I have a data frame dd as follows , Using sqldf library: sqldf("select * from sample order by Time")
Time a b c
1 10:39:00.064 IST A 8 1
2 10:39:00.165 IST D 3 1
3 10:39:00.265 IST A 9 1
4 10:39:00.366 IST C 9 2
5 10:39:00.466 IST D 5 25
6 10:39:00.566 IST W 8 1
7 10:39:00.665 IST W 6 42
8 10:39:00.765 IST I 5 45
9 10:39:00.866 IST P 4 2
10 10:39:00.967 IST T 9 4
11 10:39:01.067 IST R 7 8
12 10:39:01.168 IST Q 5 68
13 10:39:01.269 IST S 6 59
14 10:39:01.369 IST A 8 35
15 10:39:01.468 IST J 5 7
16 10:39:01.570 IST D 8 66
17 10:39:01.671 IST F 7 5
18 10:39:01.771 IST K 7 5
|
How to rearrange/reorder the rows and columns in python dataframe?
Date : December 28 2020, 06:11 AM
I wish this help you SCREEN SHOT OF ACTUAL DATA FRAMEDataframe of 5000 rows and 192 columns , IIUC, can use a loop pd.DataFrame([df.iloc[:, e:e+3].values.flatten() for e in range(0, 192, 3)])
|
Rearrange dataframe, every n rows to columns, left to right, top down
Date : March 29 2020, 07:55 AM
it should still fix some issue A list of strings. , Just change the reshape parameter and pass order parameter df_1 = pd.DataFrame(np.reshape(df.values,(3,5),order='F'))
|