single level variables in mixed model (lme4) error in R
Date : March 29 2020, 07:55 AM
it fixes the issue Try the kinship package, which is based on nlme. See this thread on r-sig-mixed-models for details. For non-normal responses, you'd need to modify lme4 and the pedigreemm package; see this question for details.
|
Multi-level regression model on multiply imputed data set in R (Amelia, zelig, lme4)
Tag : r , By : Search Classroom
Date : March 29 2020, 07:55 AM
help you fix your problem I modified the summary function for this object (fetched the source and opened up ./R/summary.R file). I added some curly braces to make the code flow and changed a getcoef to coef. This should work for this particular case, but I'm not sure if it's general. Function getcoef searches for slot coef3, and I have never seen this. Perhaps @BenBolker can throw an eye here? I can't guarantee this is what the result looks like, but the output looks legit to me. Perhaps you could contact the package authors to correct this in the future version. Model: ls.mixed
Number of multiply imputed data sets: 5
Combined results:
Call:
zelig(formula = polity ~ 1 + tag(1 | country), model = "ls.mixed",
data = a.out$imputations)
Coefficients:
Value Std. Error t-stat p-value
[1,] 2.902863 1.311427 2.213515 0.02686218
For combined results from datasets i to j, use summary(x, subset = i:j).
For separate results, use print(summary(x), subset = i:j).
summary.MI <- function (object, subset = NULL, ...) {
if (length(object) == 0) {
stop('Invalid input for "subset"')
} else {
if (length(object) == 1) {
return(summary(object[[1]]))
}
}
# Roman: This function isn't fecthing coefficients robustly. Something goes wrong. Contact package author.
getcoef <- function(obj) {
# S4
if (!isS4(obj)) {
coef(obj)
} else {
if ("coef3" %in% slotNames(obj)) {
obj@coef3
} else {
obj@coef
}
}
}
#
res <- list()
# Get indices
subset <- if (is.null(subset)) {
1:length(object)
} else {
c(subset)
}
# Compute the summary of all objects
for (k in subset) {
res[[k]] <- summary(object[[k]])
}
# Answer
ans <- list(
zelig = object[[1]]$name,
call = object[[1]]$result@call,
all = res
)
#
coef1 <- se1 <- NULL
#
for (k in subset) {
# tmp <- getcoef(res[[k]]) # Roman: I changed this to coef, not 100% sure if the output is the same
tmp <- coef(res[[k]])
coef1 <- cbind(coef1, tmp[, 1])
se1 <- cbind(se1, tmp[, 2])
}
rows <- nrow(coef1)
Q <- apply(coef1, 1, mean)
U <- apply(se1^2, 1, mean)
B <- apply((coef1-Q)^2, 1, sum)/(length(subset)-1)
var <- U+(1+1/length(subset))*B
nu <- (length(subset)-1)*(1+U/((1+1/length(subset))*B))^2
coef.table <- matrix(NA, nrow = rows, ncol = 4)
dimnames(coef.table) <- list(rownames(coef1),
c("Value", "Std. Error", "t-stat", "p-value"))
coef.table[,1] <- Q
coef.table[,2] <- sqrt(var)
coef.table[,3] <- Q/sqrt(var)
coef.table[,4] <- pt(abs(Q/sqrt(var)), df=nu, lower.tail=F)*2
ans$coefficients <- coef.table
ans$cov.scaled <- ans$cov.unscaled <- NULL
for (i in 1:length(ans)) {
if (is.numeric(ans[[i]]) && !names(ans)[i] %in% c("coefficients")) {
tmp <- NULL
for (j in subset) {
r <- res[[j]]
tmp <- cbind(tmp, r[[pmatch(names(ans)[i], names(res[[j]]))]])
}
ans[[i]] <- apply(tmp, 1, mean)
}
}
class(ans) <- "summaryMI"
ans
}
|
How do I code the individual in to an lme4 nested model?
Date : March 29 2020, 07:55 AM
Any of those help As Roland says, if schoolnumber is categorical/a factor variable, then your first model should fail: ~ schoolnumber + (1 | schoolnumber/classnumber)
~ (1 | schoolnumber/classnumber) + (1|studentID)
|
Date : March 29 2020, 07:55 AM
|
Rewriting Mixed effects model formula from R (lme4) to Julia
Date : March 29 2020, 07:55 AM
|